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In this paper, a wire mesh metallic photonic crystal is modelized as a stack of gratings of period d made of
very thin infinitely metallic rods �the conductivity is assumed to be infinite� of radius a �a�d�. This structure
is illuminated by a s-polarized plane wave of wavelength �. First, we give the diffracted field in closed form
for very large wavelengths compared to the period ���d�. We derive a very accurate formula for the cut
wavelength and we show that the plasma frequency in wire photonic crystals depends upon the Bloch vector.
This latest formula is checked numerically.
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I. INTRODUCTION

Photonic crystals are artificial materials structured peri-
odically, with the aim at controlling light propagation in
them �1�. Metallic photonic crystals �2� have recently at-
tracted the attention of several authors for their ability of
exhibiting a very low plasma frequency and a homogeneous
behavior corresponding to a negative relative permittivity
�3–14�. More recently, indications of a negative permeability
have been reported �15–20�. The mixture of both media lead
to left-handed materials �21�. In a recent paper �13�, Souk-
oulis et al. have inspected various formulas for deriving the
homogenized permittivity and the cut frequency for a system
of parallel metallic wires. Various approaches have been pro-
posed, all of them leading to different formulas, none of
which being really fully satisfactory. In this paper we provide
an accurate formula for the cut frequency as a function of the
angle of incidence �or, more generally, the horizontal com-
ponent of the Bloch vector�, for a wire mesh photonic crys-
tal. The wire mesh photonic crystal is modelized as a stack of
diffraction gratings made of very thin rods �radius a� with
period d �see Fig. 1�. It is illuminated by an incident,
s-polarized, plane wave Ei under the incidence �. The wave-
length in vacuum is � and the wave number is k0=2� /�. We
denote by Et the total electric field and by Ed=Et−Ei the
diffracted field. The basic assumption here is that k0a�1 and
k0d�1.

II. ASYMPTOTIC ANALYSIS OF THE SCATTERED FIELD

The field diffracted at r= �x ,y� by the wire situated at
abscissa n�d reads as En

d�r�=bnH0
�1��k0�r−ndex��. Here the

wires are periodically settled and thanks to Bloch theorem
we have bn=eink0d sin �b0, where b0 is a coefficient to be de-
termined. Adding the contribution of all wires, we get, for
the total diffracted field

Ed�r� = b0�
n

eink0d sin �H0
�1��k0�r − ndex�� . �1�

From scattering theory �22�, we know that the field
diffracted by one rod is obtained through the scattering

matrix s0�k0a�=−J0�k0a� /H0
�1��k0a� by bn=s0�Ei�ndex�

+�m�nbmH0
1�k0�m−n�d��, that is

b0 =
Ei�0�

s0
−1 − �

n�0
eink0d sin �H0

�1��k0�n�d�
�2�

�J0 and H0
�1� are, respectively, the Bessel function of 0th order

and the Hankel function of first type and 0th order�.
The total diffracted field is given by

FIG. 1. Grid composed of thin infinitely metallic circular
rods.
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Ed�r� = b0�
n

eink0d sin �H0
�1��k0�r − ndex�� . �3�

Our aim is now to study the limit of this expression when
the wavelength is large with respect to the radius of the rods
and the period of the grating �See Ref. �23��. The fundamen-
tal quantities are then k0a and k0d. For later purpose, we
define the following combined quantities:

L =
d

�
ln� d

2�a
�, � = 	0L , �4�

where 	0=k0 cos �.
The point is to evaluate the asymptotic behavior of b0 and

that of the series defining Ed�r�. For that purpose, we note
the following representation formula:

�
n

ein
0dH0
�1��k0�r − ndex�� =

2

d
�

n

1

	n
ei�
nx+	n�y��, �5�

where 	n=	k0
2−
n

2, 
n=k0 sin �+n 2�
d .

The behavior of b0 when k0d tends to 0 cannot be ob-
tained by taking the limit of each term of the series in �2�,
because the terms are singular there. Instead, we perform an
asymptotic analysis, starting with equality �5�. Our point is to
let r= �x ,y� tend to 0, and we first set y=0,

�
n�0

ein
0dH0
�1��k0�x − nd�� = − H0

�1��k0�x�� +
2

d
�

n

1

	n
ei
nx.

�6�

We cannot let x tend to 0 on the right-hand side, because
H0

�1��k0�x�� and the series are singular there. However, both
singularities compensate. Indeed, the singularity of the series
can be obtained explicitly by analyzing the convergence ratio
of the series: as n tends to infinity we have 	n
2i��n� /d, so
the series is logarithmic,

2

d
�

n

1

	n
ei
nx =

2

d	0
ei
0x +

2

d
�
n�0

� 1

	n
−

d

2i��n��ei
nx

+ �
n�0

1

i��n�
ei
nx

and the last series is easily seen to be equal to
2
i�ei
0x ln�2 sin��x /d��. By using the expansion of H0

�1��k0�x��
near x=0, we get �� is the Euler constant�,

− H0
�1��k0�x�� + ei
0x 2

i�
ln�2 sin��x/d��


 − 1 −
2i

�
� +

2i

�
ln�2�

d
� �7�

which shows that

�
n�0

ein
0dH0
�1��k0�n�d� = − 1 −

2i

�
� +

2i

�
ln�2�

d
� +

2

d	0

+
2

d
�
n�0

� 1

	n
+

1

	−n
−

d

i��n�� . �8�

Finally, when k0d is small, the last series is equivalent to

i�− 3 + 2 cos2����
�3 
�3��k0d�2

and consequently

�
n�0

ein
0dH0
�1��k0�n�d� = − 1 −

2i

�
� +

2i

�
ln� 2�

k0d
� +

2

d	0

+ O��k0d�2� . �9�

We are now in a position to give an asymptotic expansion
for b0. When k0a tends to zero, we have

s0
−1�k0a� = −

H0
�1��k0a�

J0�k0a�

= − 1 −
2i

�
�� + ln�k0a/2�� +

i

2�
�k0a�2 + O��k0a�3� .

�10�

From this expression and �9�, where we remove the terms
that tend to 0 with k0d, we obtain from �2�,

b0 
 −
	0d

2

1

1 − i�
Ei�0� . �11�

We are now able to give an asymptotic expansion of Ed by
splitting the sum �3� into two terms corresponding to the
evanescent modes and the unique propagative mode,

Ed 
 Eprop
d + Eevan

d , �12�

where

Eprop
d =

− 1

1 − i�
ei�
0x+	0�y��Ei�0� �13�

and

Eevan
d = −

2b0

d
�
n�0

1

	n
ei�
nx+	n�y��Ei�0� . �14�

The total field is obtained by adding the incident field
�1� For y�0,

Et�r� = �ei�
0x−	0y� +
− 1

1 − i�
ei�
0x+	0y�

−
1

L

�

1 − i� �
n�0

1

	n
ei�
nx+	n�y���Ei�0� . �15�

�2� For y�0,

Et�r� = � �

� + i
ei�
0x−	0y� −

1

L

�

1 − i� �
n�0

1

	n
ei�
nx+	n�y���Ei�0� .

�16�

The reflection and transmission coefficients are readily ob-
tained

r =
− 1

1 − i�
, t = 1 + r =

�

� + i
. �17�
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The expression �17� shows that the reflection coefficient
tends to −1 as k0d tends to 0. This result is quite a striking
one if one thinks of the extremely low concentration of ma-
terial in this scattering experiment. The behavior of such a
grid is equivalent to a perfect mirror at the vicinity of �
= +�. For instance, for a /d=1/1000 and for k0d=1/100, in
normal incidence we find a theoretical reflection coefficient
worthy of the best mirrors, R= �r�2=0.999 739. Moreover, the
expression of the reflection coefficient r gives us the critical
dimension of the radii of the wires. If a�k0� is related to k0 in
such a way that

k0d cos �0

�
ln� d

2�a�k0�� = � , �18�

where � is some constant, i.e.,

a�k0� =
d

2�
e−��/�k0d cos �0� �19�

then the grid, at the limit, does not behave neither as vacuum
nor as a perfect mirror because the reflection coefficient is
equal to r= −1

1+i� . Coming back now to the evanescent field
and having in mind that k0d�1 we have 	n
2i��n� /d and
therefore the expression written above �13� can still be sim-
plified,

Eevan
d 


− 4i

ln� d

2�a
� ln�1 − eiK�x+i�y���Ei�0� , �20�

with K=2� /d. Note that for large wavelengths, the field is
independent of �. Moreover for sufficiently large y, we have

Eevan
d 


− 4i

ln� d

2�a
� e−K�y�eiKxEi�0� �21�

and therefore can be merely neglected. As a matter of fact,
we will see later on in the paragraph devoted to numerical
applications that evanescent fields can be neglected even for
y
d. Finally, we must point out that Eqs. �17� and �20� must
be used carefully when dealing with metal of finite conduc-
tivity. In that latest case, the two aforementioned equations
always hold only if the skin layer thickness is small with
respect to the radii of wires.

III. DERIVATION OF THE CUT WAVELENGTH

In the preceding section, we have derived an explicit ex-
pression for the field diffracted by the wire grating this al-
lows us to derive the dressed TG matrix �24� of a single
grating layer. This matrix does not depend upon the charac-
teristics of the incident wave, that is, the wavelength and the
angle of incidence,

TG = � 1 0

2

L
1 � . �22�

Finally, in order to modelize the wire mesh photonic crystal,
we derive the total dressed T matrix by adding a slab of air

below the wire mesh grating cf. Fig. 2. The Th matrix for a
homogeneous slab of dielectric material with permittivity 1
between 0 and −h is given by

Th = �cos�	0h� 	0
−1 sin�	0h�

− 	0 sin�	0h� cos�	0h�
� �23�

so that the total T matrix for the grating and the slab is

T =�cos�	0h� +
2

	0L
sin�	0h� 	0

−1 sin�	0h�

− 	0 sin�	0h� +
2

L
sin�	0h� cos�	0h� � .

�24�

We have now characterized a basic layer of the photonic
crystal. A general device is made of a stack of N such layers.
Due to the very weak evanescent fields, the transfer matrix of
such a layered device is very well approximated by TN. Note
that the influence of the evanescent waves can be easily de-
rived from Eq. �20�.

In wire mesh photonic crystals, it has been well estab-
lished that there is a cut wavelength, above which there is a
band gap �this phenomenon is sometimes described as a plas-
mon frequency�. Our point is to derive an implicit equation
for the plasmon wavelength �c. This wavelength corresponds
to the edge of a band gap. A band gap is characterized by the
fact that �tr�T���2, when the wavelength is very large with
respect to d, the transfer matrix is very near the identity
matrix, consequently, the equation for the edge �c of the last
gap reads as tr�T�� ,���=2. This amounts to looking for 	0

c

= 2�
�c

cos � which is a solution of

cos�	0
ch� +

1

	0
cL

sin�	0
ch� = 1. �25�

In order to solve this equation we denote X=tan�	0
ch /2�, and

we obtain

FIG. 2. 0-order efficiency R0�0� versus the wavelength � for a
stack of 11 gratings in normal incidence for d=1, a=0.005 and h
=0.5. �0

Bragg=2h=1 represents the Bragg wavelength, whereas �0
c,1

represents the first approximation given by Eq. �31� and �0
c is the

cut wavelength derived from Eq. �27�.
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1 − X2

1 + X2 +
1

�

2X

1 + X2 = 1, �26�

whose solution is 	0
cL=X. Finally, we get that the plasmon

frequency is given by the following implicit dispersion rela-
tion:

	0
cL tan�	0

ch/2� = 1. �27�

Now, if we let xc=
h	0

c

2� , this dimensionless number is the so-
lution of

2�xcL

h
tan��xc� = 1, �28�

that we must solve numerically for any parameter L
h . Three

cases can therefore occur.
�i� L

h �1 �i.e., h�d, for realistic size of rods, say a
=10−3d�. In this case, we have xc
1/2 and, as a result, the
cut wavelength �0

c is given by

�0
c =

2� cos �

	0
c 
 2h cos � , �29�

which is nothing but the Bragg condition. As a conclusion
�0

c �d �except for grazing incidence� which is, fortunately,
compatible with the homogenization process.

�ii� L
h �1. In this case we can make Eq. �28� explicit by

using the expansion tan��xc�
�xc. We find

xc =
1

	2�
	h

L
�30�

and we deduce an approximation �0
c,1 of �0

c �see Figs. 2–4�,

�0
c,1 = �	2Lh cos � . �31�

�iii� L
h 
1. We are therefore between the two previous

cases. And in order to test the accuracy of our formula, we

FIG. 3. 0-order efficiency R0�0� versus the wavelength � for a
stack of 11 gratings in normal incidence for d=1, a=0.005 and h
=1. �0

Bragg=2h=2 represents the Bragg wavelength, whereas �0
c,1

represents the first approximation given by Eq. �31� and �0
c is the

cut wavelength derived from Eq. �27�.

FIG. 4. 0-order efficiency R0�0� versus the wavelength � for a
stack of 11 gratings in normal incidence for d=1, a=0.005, and h
=1. �0

Bragg=2h=10 represents the Bragg wavelength, whereas �0
c,1

represents the first approximation given by Eq. �31� and �0
c is the

cut wavelength derived from Eq. �27�. Note the widths of gaps for
this very sparse structure �filling ratio=1.57�10−5�.

FIG. 5. Difference of the 0-order efficiency between a non-
square lattice ��=� /6� and a square lattice versus the wavelength
for a stack of 11 gratings in normal incidence for d=1, a=0.005,
and h=1. �0

Bragg=2h=2 represents the Bragg wavelength, whereas
�0

c,1 represents the first approximation given by Eq. �31� and �0
c is

the cut wavelength derived from Eq. �27�.

FIG. 6. Difference of the 0-order efficiency between a non-
square lattice ��=� /4� and a square lattice versus the wavelength
for a stack of 11 gratings in normal incidence for d=1, a=0.005 and
h=1. �0

Bragg=2h=2 represents the Bragg wavelength, whereas �0
c,1

represents the first approximation given by Eq. �31� and �0
c is the

cut wavelength derived from Eq. �27�.
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must make some numerical experiments which is the topic of
the following.

Our aim here is to evaluate the accuracy of Eq. �28� in
some representative examples. Take the example of the stack
of gratings each of them being made of thin circular metallic
rods as shown in Fig. 1. In the following a

d =0.005 has been
taken for different ratios h

d and different kinds of crystals
defined by the angle � �see Fig. 1� in order to check the
validity of our method. For this purpose, we plot the 0-order
efficiency versus the normalized wavelength �

d in normal in-
cidence as shown in Figs. 2–4. It is of importance to note
that the cut wavelength �0

c derived from Eq. �27� is ex-
tremely reliable even if d

h �1 as shown in Fig. 2 for which
d
h =2. Conversely, the Bragg condition leads to absurd results
except for very large ratios h

d =2. Finally, it is worth noting
that the T matrix �cf. Eq. �24�� is impervious to the explicit
lateral position of the wires. As a result, for large wave-
lengths, the reflected field does not depend on � as shown in
Figs. 5–7 where the difference of the 0-order efficiency be-
tween a nonsquare lattice �for which ��0� and the square
lattice ��=0� are plotted in a logarithmic scale.

Neglecting evanescent waves as we did to obtain the cut
wavelength, we can find an equivalent formulation,

�Ed�y=0 = 0, and 
 �Ed

�y
�

y=0
=

2

L
Ed�0� �32�

where �·�y=0 is the jump of the quantity within the square
brackets when crossing the plane y=0. We have, indeed, Ed

solution of �Ed+k0
2Ed=0 everywhere except for y=0 and

due to the invariance of the above relations with respect to x,
we can look for solutions in the form Ed�x ,y�=ei
0xU�y�.
The outgoing waves lead therefore to

U�y� = �1 + r0ei	0y , y � 0,

t0e−i	0y , y � 0.
� �33�

Eventually, by making use of Eqs. �32�, we find expressions
which are consistent with Eq. �22�, namely,

r0 =
− 1

1 − i	0L
and t0 = 1 + r0. �34�

As a conclusion, Ed is solution in D� �sense of distributions�
of

�Ed + k0
2Ed =

2

L
Ed��y�=0 �35�

and more generally for a stack of N gratings,

�Ed + k0
2Ed =

2

L
Ed�

k=0

N−1

��y�=−kh. �36�

IV. CONCLUDING REMARKS

In this paper, we derive an expression for perfectly metal-
lic gratings at long wavelengths which leads to a very simple
dressed matrix associated with one grating. In a second step
we find a very accurate formula which gives the cut wave-
length of a very sparse photonic crystal even for cut wave-
lengths of the same magnitude of the period of aforemen-
tioned crystals. This method can be easily generalized for
noncircular rods; the characteristic length L cannot be de-
rived in a closed formula and therefore necessitates a nu-
merical computation. Moreover, the involved structures be-
ing infinitely conducting and completely transparent for the p
polarization, we think that it is possible to derive explicit
formulas for three-dimensional structures.
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